

COMPREHENSION-DRIVEN PROGRAM ANALYSIS (CPA) FOR
MALWARE DETECTION IN ANDROID PHONES

IOWA STATE UNIVERSITY

JULY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-186

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-186 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
MARK K. WILLIAMS WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information
 Exploitation and Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE I Form Approved
OMS No. 0704-0188

The public reporting burden for this collectioo of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection ot information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operatioos and Reports (0704-0188), 1215 Jefferson Davis HighWay,
Suite 1204, Attingtoo, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of Jaw, no person shall be subject to any penalty for failing to conw with a collection of
information if ij does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 3. DATES COVERED (From - To)

JULY 2015
12. REPORT TYPE

FINAL T ECHNICAL REPORT FEB 2012 - JUN 2015
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

FA8750-12-2-0126
COMPREHENSION-DRIVEN PROGRAM ANALYSIS (CPA) FOR
MALWARE DETECTION IN ANDROID PHONES Sb. GRANT NUMBER

N/A

Sc. PROGRAM ELEMENT NUMBER

6 1101E

6. AUTHOR(S) Sd. PROJECT NUMBER

APAC
Suraj Kothari

Se. TASK NUMBER

97

Sf. WORK UNIT NUMBER

76

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Iowa State University REPORT NUMBER

1350 Beardshear Hall
Ames, lA 50011-2025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Air Force Research Laboratory/RIGS A FRU RI

525 Brooks Road 11. SPONSOR/MONITOR'S REPORT NUMBER

Rome NY 13441-4505
AFRL-RI-RS-TR-2015-186

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRUCA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The DARPA APAC program gave us an opportunity to make three important technological advances: (a) A graph
database program analysis platform and a graph schema for representing program semantics that together facilitate both
automation and human comprehension. (b) Malware analysis techniques and its incorporation in a security toolbox to
provide a man-machine analysis system to detect novel, sophisticated Android malware. (c) An innovative library
summarization technique and its incorporation in the FlowMiner tool that mines expressive, compact information flow
summaries from a library for accurate and scalable partial program analysis. The challenge apps were very useful in
evolving our technologies and understanding its limitations. Details of technological advances, our experiences and
observations are outlined in this report.

1S. SUBJECT TERMS
Android malware, graph paradigm for software analysis, man-machine systems to reason about large software,
automated summarization of software libraries

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

a. REPORT l b. ABS~ACT I c. THIS GAGE u uu

18. NUMBER
OF PAGES

33

19a. NAME OF RESPONSIBLE PERSON

MARK K. WILLIAMS
19b. TELEPHONE NUMBER (Include area code)

N/A
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table of Contents
1. Executive Summary ... 1

2. Introduction .. 3

2.1 Team .. 4

2.2 Goals and Progress Towards Goals ... 4

3. Methods, Assumptions, and Procedures .. 6

3.1 Technological Advances ... 9

3.1.1 Graph Schema and Program Analysis Platform ... 9

3.1.1.1 Graphs and Queries .. 9

3.1.1.2 Human Interaction ..10

3.1.1.3 Extensibility ..11

3.1.2 Android Security Toolbox ..11

3.1.2.1 Permission Mapping ...12

3.1.2.2 Analyzers ...12

3.1.2.3 Indexers ...13

3.1.2.4 Dashboard ...13

3.1.3 FlowMiner ...16

3.1.3.1 Balancing Expressiveness and Compactness ..16

3.1.3.2 Validation ...17

3.1.3.3 Open Source ..17

4. Results and Discussions ...17

4.1 Summary ...17

4.2 Analyst Backgrounds ...18

4.3 Analysis Process ...18

4.4 Engagement Results ...19

4.5 Engagement Observations ..23

5. Tool Releases ...24

6. Concluding Remarks ...25

7. Publications...26

8. References ...27

9. List of Acronyms ...28

ii

List of Figures
Figure 1 - Existing 2-pass vs. Integrated Comprehension Driven Analysis Approach 7
Figure 2 - Dashboard ..15
Figure 3 - Dashboard Wizard ..15
Figure 4 - Average Logical Lines of Code ...20
Figure 5 - Application Size vs. Detection Rate...21
Figure 6 - Application Size vs. Analysis Time ..22

List of Tables
Table 1 - Challenge Application Distribution ..19
Table 2 - Challenge Application Metrics ..20
Table 3 - Challenge Application Detection Rates ..21
Table 4 - Challenge Application Analysis Time..22

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1. Executive Summary
Mobile malware detection can be extremely challenging in the presence of cross-cutting
control and data dependencies, invisible control switches due to multithreading or event
processing. Moreover, inherent ambiguities of an application’s intent make it difficult to
separate malicious behavior from legitimate functionality. Given that provable
automation is not possible in all cases, our proposed novel comprehension-driven
graph-based approach enables an iterative refinement process capable of quickly
discovering sophisticated malware. We were the top-performing Blue team in Phase I
and among the top 3 performers in Phase II. We exceeded Phase I and Phase II BAA
goals in terms of analysis time, and also in terms accuracy in Phase I. The Red team,
however, has clearly shown that malware detection is still an unsolved problem and
more research is needed. The program has brought to the surface some of the hard
problems of static analysis and the need for a program comprehension technology to
enable humans to develop better hypotheses of potential malware.

Our success on APAC is directly attributable to the identification of, and novel solutions
for, the following research questions:

1. How should a software analysis platform be built to facilitate both automation and
human comprehension?

2. How can a man-machine analysis system detect novel, sophisticated, and
domain-specific malware?

3. How can expressive, compact information flow summaries be mined from a
library for accurate and scalable partial program analysis?

How should a software analysis platform be built to facilitate both automation and
human comprehension?

Existing frameworks were insufficient for our purposes, providing either automation or
static visualizations, but we required a flexible and interactive query-model-refine
paradigm. To overcome the limitations of prior work and address this research question,
we commissioned our subcontractor, EnSoft, to advance Atlas and its graph schema to
meet our need. Atlas employs a graph-based mathematical abstraction of software. It
preprocesses the Abstract Syntax Tree (AST) of a program into a rich, attributed graph
data structure in an in-memory graph database. This software graph can be queried in
automated and interactive ways. Automation is supported through an embedded Java
DSL, allowing automated analyzers to be written on top of Atlas using very few lines of
code. Interaction and comprehension are supported in several ways. First, analysis
results can be viewed using intuitive graph visualizations that have a one-to-one

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

correspondence with the matching source or byte code. Second, Atlas provides a Shell
View that allows the user to compute, query, and visualize results on-demand. Third,
analyzers can be invoked automatically in response to user clicks through a
configurable Smart View. For example, this view can be configured to instantly display a
call graph, type hierarchy, or other artifact whenever the user clicks on a source token
or graph element. This potent combination of automation and interaction has the effect
of amplifying the intelligence of its users, enabling use cases that would be infeasible to
automation or manual effort alone.

How can a man-machine analysis system detect novel, sophisticated, and
domain-specific malware?

On its own, a software analysis platform that enables automation and interaction is not
sufficient for malware detection –it is a foundation upon which a man-machine detection
approach can be constructed. We recognized immediately that automated tooling can
be used to point out interesting program behaviors, but a human analyst is required for
making domain-specific judgment calls. The design of such a hybrid system
necessitates answers to new questions such as (i) what behaviors are important to
detect?, (ii) what behaviors can a static analysis feasibly detect?, (iii) how can we
present behaviors to an analyst in a comprehensible way?, and (iv) how can we enable
an analyst to effectively pose and answer follow-up questions?

Question (iv) is particularly crucial for addressing the shortcomings of traditional,
existing two-pass defect detection tools. In a traditional two-pass tool, automation
performs the first pass, and then a human must manually confirm or reject its alarms.
This places an unreasonable burden on the user. Today's malware detection
approaches either fall into the two-pass category, or else they are fully-automated and
therefore not suitable for detecting novel, sophisticated, or domain-specific malware.
We used Atlas and its APIs to move beyond prior work and create the Security Toolbox.
Unlike conventional two-pass approaches, the Security Toolbox uses an interactive
approach. We detect malware using repeated iterations of automation and interaction;
automation mines the artifacts to expose program behaviors, and the analyst
synthesizes the results and formulates new questions for the automation to answer.

How can expressive, compact information flow summaries be mined from a
library for accurate and scalable partial program analysis?

Android applications, like most modern software, are built on top of reusable libraries.
Android provides a massive library, including the entire standard Java library, which
applications can call. In addition, the Android framework itself makes callbacks into an

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

application in response to button clicks, interprocedural communication, component
lifecycle changes, and many other events. Thus, analyzing an app by itself is a form of
partial program analysis, defined as the analysis of a proper subset of a program's
implementation. Due to the sheer size of the Android framework (orders of magnitude
larger than an app), including it in order to perform whole program analysis was
infeasible. Yet failing to capture its behaviors, particularly information flows, resulted in
incomplete results and missed detections from the APAC performers.

The APAC Blue teams tried divergent approaches to solve this problem. As reported in
their research paper, Stanford had a small army of graduate and undergraduate
students to hand-write coarse information flow specifications for “important” Android
APIs, then later worked to dynamically verify them. This labor-intensive process
produced succinct, but coarse, results of varying quality and coverage. At the other
extreme, some performers attempted to include the entire Android framework into their
analysis. This approach tackled the problems of quality and coverage, but introduced
dire problems of computational scalability. Our ISU team felt that the best of both worlds
could be captured by an automated, summary-based approach.

Most prior work on the topic of library summarization focused on strategies for call
graph construction, and thus was unhelpful. While at least one other APAC performer,
Stanford, attempted to summarize library data flows, we found that their results were too
coarse to be used accurately or capture flows involved in callbacks. To aggregate the
benefits of their work while avoiding the drawbacks, we designed FlowMiner, an
automated tool for extracting fine-grained, compact data flow summaries of Java library
byte-code. FlowMiner employs the graph-based analysis paradigm and APIs of Atlas to
perform a one-time static analysis of a Java library. It outputs sound data flow
summaries as an abstract data flow graph, encoded using a portable XML format. Static
analysis tools can use this portable summary file to achieve complete and accurate, yet
scalable, partial program analysis.

2. Introduction
This work was performed by Iowa State University (ISU) and was issued by the Air
Force Research Laboratory (AFRL) under Cooperative Agreement No. FA8750-12-2-
0126, Comprehension-Driven Program Analysis (CPA) for Malware Detection in Android
Phones. The Defense Advanced Research Project Agency (DARPA) program manager
was Tim Frasier and the AFRL Program Manager was Mark Williams. The PI was Dr.
Suraj Kothari from ISU and the subcontractors were EnSoft. Corp and North Carolina
State University (NCSU participated only during the early part of Phase I).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

As described by DARPA [1] this program aims to address the following challenges.

The Automated Program Analysis for Cybersecurity (APAC) program aims to
address the challenge of timely and robust security validation of mobile apps by
first defining security properties to be measured against and then developing
automated tools to perform the measuring. APAC will draw heavily from the field
of formal-methods program analysis (theorem proving, logic and machine
proofing) to keep malicious code out of DoD Android-based application
marketplaces. APAC will apply recent research breakthroughs in this field in an
attempt to scale DoD’s program analysis capability to a level never before
achieved with an automated solution.
..
The second challenge APAC aims to address is producing practical, automated
tools to demonstrate the cybersecurity properties identified. Successful tools
would minimize false alarms, missed detections and the need for human filtering
of results to prove properties.

2.1 Team
Our team is composed of three sub teams, each of which brought a unique capability to
this project.

Suraj Kothari, the principal investigator, and his team at Iowa State University have a
track record of innovative advancements in applications of program analysis.

Jeremias Sauceda, the co-principal investigator and his team at EnSoft have
experience in building world-class easy-to-use engineering tools that apply
sophisticated algorithms.

In the first year of Phase I, Xuxian Jiang and his team at North Carolina State University
provided their expertise in Android malware in the wild.

2.2 Goals and Progress Towards Goals

The Automated Program Analysis for Cybersecurity (APAC) program was designed to
find malware in Android phones. The goals as set in the program BAA [2] are listed
below.

1. Develop a practical program analysis tool to keep malicious applications written
in Java out of the DoD Android-based mobile marketplaces.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

2. Conduct novel research that leverages advances in static program analysis to
develop innovative capabilities, far beyond existing practices, to detect highly
sophisticated malware attacks that the DoD needs to be prepared for.

3. To meet the DoD needs for practical deployment, the proposed tool will surpass

the following minimum performance requirements:

A. False alarms less than 30% in Phase I and less than 5% in Phase II
B. Missed detection less than 30% in Phase I and less than 5% in Phase II
C. Manual labor required per mobile app less 160 hours in Phase I and less

than 80 hours in Phase II
D. An analyst with basic knowledge of software development and malicious

techniques should be able to operate the tool effectively

When evaluating our success of goal 1, we consider that we were the top performing
Blue team in Phase I and among the top 3 performers in Phase II, but on the other
hand, a missed detection rate of even 5% may have dire consequences when dealing
with DoD level software audits. The Red team has shown that even under somewhat
ideal conditions, the problem of detecting malware is far from solved. Additionally even
though we performed well within our analysis time goals, the APAC performers received
feedback from DoD analysts during PI meetings that human analysis time may need to
be decreased further to meet current analysis demands. That being said, our average
analysis time was significantly under the proposed analysis time goals proposed in the
BAA.

In response to goal 2, our team has published peer-reviewed papers on novel program
analysis techniques, which are detailed in the Publications section at the end of this
report.

With regard to goal 3A, our team found unintended malware (malicious behavior not
purposely crafted by the Red teams, nonetheless found to exist in a challenge app). In
Phase I, we found 6 unintended malwares and 35 unintended malwares in Phase II. Our
human-in-the-loop process did not produce false alarms in Phase I or II.

Pertaining to goal 3B, we exceeded our Phase I goal of limiting missed detections to 30
% with a missed detection rate of 6.49 %. In Phase II, as a result of the changing
nature of the challenge applications our missed detection rate increased to 25% and so
we did not meet our Phase II goal of 5 %. The Red team has clearly shown that
malware detection is still an unsolved problem and more research is needed. The
APAC program has brought to the surface some of the hardest problems of static

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

analysis and the need for new technology to address those problems. Specifically, there
is a critical need for new static analysis based program comprehension techniques to
enable humans to better hypothesize the candidates for potential malware. In almost all
challenge apps in Phase II where we did not find the planted malware, our failure was
because of our inability to come up with the right hypothesis. In many of those case we
hypothesized and found malware but it was not the one that was planted by the Red
Team. Thus, in phase II although we found a lot more unintended malware (35
instances of unintended malware in Phase II as compared to 6 instances in Phase I),
our missed detection rate increased was worse in Phase II (25% missed detection rate
in Phase II compared to 6.49% in Phase I).

Our 3C goal of analyzing applications under 160 hours per application in Phase I and
under 80 hours in Phase II was achieved. In Phase I we averaged 1.13 hours per
application and an average of 9.19 hours per application in Phase II. Our analysis time
increased between Phase I and Phase II, the bulk of the increase is due to the time that
analysts needed for hypothesizing the malware. The time for automated analysis was
not the issue. In fact the apps in Phase II were typically much smaller than the apps in
Phase I and the scalability of automated analysis was not the issue.

As for goal 3D, we believe we have met this goal. Throughout APAC Phase I and II,
ISU has employed undergraduate students to provide feedback and assist with
development tasks of the Security Toolbox. And an undergraduate course in software
engineering that used Atlas for homework on program analysis showed that users with
limited background in software analysis and malware could operate the tool
successfully. The Red team continually praised our tool for its usability and maturity in
the field.

A further discussion of these results can be found in the Results and Discussions
section.

3. Methods, Assumptions, and Procedures
Our research focused on the challenges not addressed, novel and sophisticated
malware that unlike the malware reported in the wild, pose significant program analysis
challenges. Unlike the other security attacks that are immediately noticeable through
their denial of service, malware apps can silently leak sensitive information without
revealing themselves.

Detecting sophisticated and novel mobile malware can be extremely challenging in the
presence of the following program analysis challenges:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

● Non-local data and control dependencies in the malware that cut across several
functions and data structures.

● Invisible control switches due to multithreading or event processing - these
control switches are not directly visible in static analysis as function calls or as
control statements.

● Inherent ambiguities of an application’s intent make it difficult to separate
malicious behavior from legitimate functionality.

Users of existing defect analysis (not just malware detection) tools employ two passes:
(1st pass) the tool works automatically to produce a list of potential problems in the
code, (2nd pass) tedious manual inspection to validate the problems. This approach
runs into the following difficulties. Without any on-the-fly human intelligence to guide its
trajectory, the tool makes wrong or highly conservative decisions resulting in many false
negatives and/or positives. Moreover, the results produced by defect analysis tools lack
evidence for humans to reason with to confirm or reject the tool findings. The existing 2-
pass approach is shown in Figure 1.

Figure 1 - Existing 2-pass vs. Integrated Comprehension Driven Analysis Approach

A tool by itself cannot deal with the program analysis challenges listed above, so we
incorporate human guidance to tweak the trajectory of the tool to improve its precision in
detecting malware. A human cannot guide the tool effectively without comprehending
the application software. Nor can he comprehend the large and complex application
software without an inordinate amount of effort, so we incorporate tool assistance by
searching and extracting relevant software artifacts as evidence for the analyst to
reason about the application’s intent and validate the malware detection results from the
tool. In short, we proposed and researched a novel integrated comprehension-driven
analysis-based approach.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

As shown in Figure 1, we have a tightly coupled human-in-loop approach with iterative
refinement as opposed to the existing 2-pass approach. Our approach succeeded
reasonably well because it provided a viable alternative to address sophistications of
attacks that make program analysis difficult.

We leveraged the Query-Model-Refine (QMR) framework developed by EnSoft; it
provides the tool mechanics necessary for our tightly coupled human-in-loop approach.
Like the database language SQL, the framework incorporates a composable query
language that can be used either interactively or embedded as a Java program to
create programs to analyze programs. Because of the query language, the user is freed
from the lower-level details of static analysis and enabled to focus efforts on the
malware detection strategies at higher-level semantics. The “model” and “refine”
capabilities work in conjunction with the query language to facilitate human
comprehension by creating effective abstractions of large software. We developed
Atlas, a QMR platform for Java.

Another important aspect of our approach was to develop a tool that is evolution-friendly
and highly usable, i.e., it is fairly easy to refine and extend its malware detection
capabilities without requiring expertise in building static analysis tools. This is the case
because our approach amounts to having the malware detection capabilities
incorporated as a toolbox built on top of Atlas. The low-level details of static analysis
reside inside Atlas, and the malware detection capability resides inside the toolbox as
compact analysis programs using Atlas queries. Refining and extending the existing
detection capabilities as well as creating entirely new capabilities is relatively easy
because it can be done through query-enabled analysis programs. The underlying
design philosophy is similar to environments like Matlab where the heavy lifting is done
behind the scenes, making it much easier for the user to develop domain-specific
programs. Since creating a complete list of properties is unrealistic, it is imperative that
it be relatively simple to expand the cookbook of ready-made properties through the use
of adversarial thinking. An evolution-friendly technology provides a cost effective path
for DoD to maintain state-of-the-art in malware detection for years to come.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

3.1 Technological Advances

The DARPA APAC program gave us an opportunity to make three important
technological advances that we will describe here.

3.1.1 Graph Schema and Program Analysis Platform

How should a software analysis platform be built to facilitate both automation and
human comprehension?

We have made significant advances to answer this key question. We came up with a
graph schema, called the eXtensible Common Software Graph (XCSG) to provide an
attributed directed graph as a common medium to express rich structural and behavioral
semantics of programs in Java, Java byte code, C and C++. We advanced Atlas as the
graph database platform to write program analyzers based on the XCSG schema. We
have advanced the Atlas platform that enables one to write software analysis
verification and transformation programs in minutes or hours that otherwise would take
days or months.

Atlas parses C, C++, Java, and Java bytecode to capture complex program semantics
in a graph database. It provides APIs to mine, traverse, and transform the graph
database. Atlas APIs and program graph visualization capabilities enable quick
prototyping of tools to experiment with and advance fundamental techniques to reason
about complex problems of large software. Atlas is free for academic use. The XCSG
schema is available online.

Atlas decouples the domain-specific analysis goal from its underlying mechanism by
splitting analysis into two distinct phases. In the first phase, polynomial-time static
analyzers index the software AST, building a rich graph database. In the second phase,
users can explore the graph directly or run custom analysis scripts written using a
convenient API. These features make Atlas ideal for both interaction and automation. In
our ICSE 2014 paper, we describe the motivation, design, and use of Atlas. We present
validation case studies, including the verification of safe synchronization of the Linux
kernel, and the detection of malware in Android applications.

Demo Video: http://youtu.be/cZOWlJ-IO0k

3.1.1.1 Graphs and Queries
Graphs are a natural way to represent programs and program analysis results, where
nodes typically correspond to entities such as methods and variables, and edges
correspond to relationships such as control or data flow. The Atlas database extracts

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

and stores rich program semantics as a unified graph representation that includes
structural relationships (types, methods, fields, etc.) and control and data flows derived
by conservative analyses as the base knowledge for writing refined path, object,
context, and field sensitive analyses.

Encoding the program semantics in a unified graph has the advantage of lending itself
to composable analyses. The result of a program analysis is usually another graph,
which can then be used as the input to the next analysis. In Atlas, graphs can also be
displayed, but the visualization is not necessarily the end; the nodes and edges can be
selected, and used as inputs for the next iteration of analysis.

Many program analysis questions can be encoded as reachability queries, and so Atlas
provides a query language to make these common queries easy to write. Writing
queries also involves knowing the graph’s schema, or how the program and analysis
information is encoded. The Atlas schema, called the eXtensible Common Software
Graph (XCSG), will be discussed later.

3.1.1.2 Human Interaction
An unprecedented human interaction capability, far beyond any other existing program
analysis tool, to reason about complex problems of software is enabled by: (a) a
capability to visualize and interact with large program graphs in a way that fosters
human comprehension of complex program semantics, (b) a correspondence with the
code for program artifacts and the corresponding graphs depicting relationships
between those artifacts - a correspondence that enables scalable navigation through
large code, (c) a query interpreter shell that enables composition of powerful queries to
mine complex cross-cutting program semantics and its visualization.

From our experiences during the first few engagements analyzing Android apps, we
found that many queries were variations on data flow queries. To help accelerate the
iterative analysis process, “Atlas Smart Views” were introduced to help reduce common
queries to a point-and-click operation, wherein the analyst selects an analyzer from a
drop-down menu and that analyzer is applied automatically and the corresponding
result is shown whenever the analyst clicks on an appropriate source code entity. For
example, the analyst selects the “call graph” analyzer, clicks on a method invocation in
the source code being viewed, instantly the corresponding call graph is shown. As
another example, the analyst selects the “data flow graph” analyzer, clicks on a
parameter in for the method invocation in the source code being viewed, instantly the
corresponding data flow graph is shown. New analyzers can be added to the “Atlas
Smart Views.” We added Android-specific analyzers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

3.1.1.3 Extensibility
Atlas serves as a platform to build domain-specific toolboxes such as the Security
Toolbox we built for the APAC project. The Security Toolbox incorporates Android
semantics by extending the graph database. For example, the graph database is
extended to include the Graphical User Interface (GUI) semantics derived from the
Android XML files. The extension must be designed to follow the eXtensible Common
Software Graph (XCSG) schema.

The XCSG schema defines a semantically rich graph representation of software (i.e.
source code or binaries) to support program applications such as mining software for
patterns, malware and defect detection, building static analysis tools, and code
comprehension. XCSG is based on the eXtensible Common Intermediate Language
(XCIL) developed by Kothari and his team for the DARPA Software Enabled Control
(SEC) program [3].

Like XCIL, XCSG has semantically precise definitions for program artifacts to enable a
harmonious representation of software written in different languages. Without precise
semantics, analysis tools can easily develop a language bias that leads to incorrect
processing of other languages, especially while analyzing software written in multiple
languages. For example, the keyword “static” in C and Java have overlapping but
incompatible uses, which XCSG disambiguates. XCSG improves upon XCIL by tailoring
it for a graph database, and by encompassing representations of analysis results such
as control flow and data flow graphs.

3.1.2 Android Security Toolbox

How can a man-machine analysis system detect novel, sophisticated, and
domain-specific malware?

Our research to address this question led to several interesting innovations. Using the
program analysis platform Atlas, we have incorporated these innovations in a domain-
specific toolbox, called the Android Security Toolbox for detecting malware in Android
Apps. The Security Toolbox is designed with following goals:

1. Minimize the human effort for (a) cross-verifying automatically detected malware,
(b) performing what-if experiments to hypothesize, refine, and postulate
application- specific malware that is not on the radar of automated malware
detection.

2. Incorporate the rich and complex Android semantics of API permissions,
components such as Activities, Services, Content providers, Broadcast receivers,
and XML resource files.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

3. Provide a decoupled architecture for an evolution and user-friendly malware
detection tool. The malware detection capability is decoupled and built on top of
the program analysis platform (Atlas). The underlying design philosophy is similar
to platforms like Matlab or Mathematica with domain-specific toolboxes built on
top of general-purpose machinery.

In our ICSE 2015 paper, we describe the design and use of the Android Security
Toolbox.

Video: http://youtu.be/WhcoAX3HiNU

3.1.2.1 Permission Mapping
Android's sensitive functionalities such as sending and receiving text messages,
accessing geo-location information, or accessing user contacts are protected by runtime
checks that enforce whether or not an application has been granted permission to
invoke such functionalities. The Security Toolbox leverages the permission mapping
produced by the Toronto PScout research group. For each API version of Android, we
transform the PScout mapping to an XML file that precisely represents the permission-
protected methods. The Toolbox contains code for parsing an Application's manifest,
and uses the XML file to automatically annotate the correct API mapping onto the Atlas
program graph. We have automatically scraped and encoded into Java objects the
Google developer documentation for permissions, permission groups, and protection
levels to aid in developing analyzers. Additionally we have recovered mappings for
Android permissions to protection levels, and permissions to permission groups by
mining their relationships from the Android source.

3.1.2.2 Analyzers
An analyzer conforms to specifications defined by the Security Toolbox. Specifically an
analyzer encapsulates a name, description, set of analysis assumptions, and the
analysis program to be executed. The programs written in Java invoke Atlas APIs to
access the information in the graph database and typically its purpose is to check one
or more security properties. The result of the analyzer, called “envelope,” is an Atlas
graph that captures the program semantics relevant to the property. The graph can be
empty if the property is undetected and non-empty if the security property is detected.
The graph may be shown to be interacted with by the human analyst or used as input
into another analysis. For instance a confidentiality analyzer might first do a cheap
insensitive taint leak (reachability test) between an automatically detected source and
sink pair (e.g. a flow from the SIM card number to the Internet). If the resulting graph is
non-empty but very large we could pass the graph to a more expensive sensitive (call,
object, type, flow, etc.) taint leak analysis to prune false positives from the graph. The
toolbox refers to this type of recommended analyzer chaining as “continuations”.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

Analyzers have been subdivided into five categories: properties, smells, confidentiality,
integrity, and availability. A property is something the analyst should be aware of, but
does not necessarily indicate malice, such as uses of native code. A smell is a heuristic
similar to a property that indicates a stronger suspicion, which demands a justification,
such as using Java reflection to invoke a private Application Programming Interface
(API) method. The Security Toolbox takes the conservative approach of making smells
trend towards tighter heuristics that only report with high confidence. The
confidentiality, integrity, and availability (CIA) analyzers detect violations of CIA
properties using taint analysis of sources and sinks, modification operations on sensitive
mutables, and loop detection of expensive resources respectively. Sources, sinks,
mutables, and resources are inputs to the CIA Analyzers.

The analyzers in the Security Toolbox are general-purpose analyzers. We can only add
analyzers and input models (e.g. sources and sinks) that can be written a priori.
Domain specific knowledge such as the fact that the result of a certain sensitive
calculation should be treated as a source of information for confidentiality leaks still
needs to be determined at runtime by a human analyst. Once the new confidentiality
source is discovered however, it is a trivial task to run the various taint leak detection
analyzers with the new information.

3.1.2.3 Indexers
Since Android makes extensive use of extensible markup language (XML) for its user
interface, manifest, and other resources many important program artifacts are missing
in the Java program graph produced by Atlas. The Security Toolbox provides indexers
to annotate and add missing program elements from these resources to the Atlas
program graph.

In another use case for custom indexers, Atlas provides a conservative open-world
approximation to resolve dynamic dispatches, but leaves the necessary raw information
for type-sensitive answers to be computed. This arrangement is ideal because it allows
the Security Toolbox to explicitly choose a desired speed vs. accuracy tradeoff that suits
the situation. For conservative dynamic dispatches, the Security Toolbox implements a
type inference indexer that reduces the set of conservative edges by tagging edges that
it can show are likely runtime behaviors. To enable object sensitivity, Atlas provides
unique object instance ids, which can be used to maintain call site histories and perform
sensitive data flow traversals.

3.1.2.4 Dashboard
The Dashboard (shown in Figure 2) is an interface for automating the execution and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

managing results of the Toolbox's automated analyzers. The Dashboard accounts for
analyzer dependencies to enable the highest amount of parallel computation while
running a multitude of analyzers. As results are computed, they are presented to the
analyst in the work item queue on the right of the Dashboard. Results can be filtered by
category and marked as reviewed. Optionally an analyst can make additional notes on a
work item. Since work items correspond to subgraphs of the program graph, they can
be named and even colored to help identify separate program subsystems. Program
artifacts can be manually added or removed from a work item based on the colors given
to program artifacts.

Since some analyses depend on the results of another analysis, such as type inference
or resource indexing, and other analyses do not have prerequisite analyses some
results can be computed in parallel. The Dashboard builds a precedence graph and
prioritizes the analyses that enable the maximum amount of parallelization.

Results can be inspected as soon as they are available, and the analyst can sort and
filter results by type, contents, and state. State can either be reviewed or un-reviewed
and colored or uncolored. An analysis result can optionally be assigned a color. The
color is simply an Atlas tag for all of the graph elements inside of the work item.
Additional elements outside of the original result set can be colored with the same
coloring to manually add elements to the work item.

Each analysis work item has a note-taking field that allows the analyst to record time-
stamped notes. Using a utility developed for the Security Toolbox called AuditMon, the
Dashboard can record selection events directly into the Atlas program graph. This
information can later be used to review the audit.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Figure 2 - Dashboard

Since analyses contain configurations options, such as selecting trade offs on accuracy
vs. time, the Dashboard provides a configuration wizard (Figure 3) to enable or disable
individual analysis programs or select analysis strategies.

Figure 3 - Dashboard Wizard

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

3.1.3 FlowMiner

How can expressive, compact information flow summaries be mined from a
library for accurate and scalable partial program analysis?

Our research to address this question has led a technological advance for analyzing
programs that depend on software libraries.

Static program analysis tools are critical to the field of software engineering, allowing us
to compile, refactor, verify, and understand our code. Because modern software is built
on top of reusable libraries and frameworks, whole program analysis is prohibitively
expensive; hence tools must instead perform partial program analysis - analysis of a
proper subset of a program's implementation. Missing data flow semantics of these
components introduce problematic gaps for many use cases, including security-critical
analyses. Prior attempts to overcome this, including hand-written models, heuristics,
and dynamically inferred specifications, are too coarse for many analysis use cases,
introducing inaccuracies.

Supported by the additional seed funding in 2014, we started developing FlowMiner, a
tool to mine expressive data flow summaries from Java library binaries to enable
complete and accurate partial program analysis. This work was recently completed and
it is a part of Tom Deering’s Ph.D. research. As far as we know, we are the first to
create fine-grained summaries that can be used in a context, type, field, object and flow-
sensitive manner. We also emphasize compaction – flow details that are not critical for
accurate use are elided into simple edges between elements that are accuracy-critical.
As a result, summaries extracted by FlowMiner are an order of magnitude smaller than
the original library in size. The salient features of our technique are: (i) novel algorithms
to extract fine-grained summary data flow semantics from a Java library, (ii)
compactness of the summaries with respect to the original libraries, (iii) graph
summarization paradigm that uses a multi-attributed directed graph as the mathematical
abstraction to store summaries, (iv) open-source implementation (FlowMiner) of the
above that saves summaries in a portable format usable by existing analysis tools, and
(v) validation of our work by on some of the most popular Java libraries. We discuss the
characteristics of our summaries versus those from other state-of-the-art tooling. We
also demonstrate that our work allows our existing analysis tools to accurately handle
previously unaddressed data flows in Android applications.

3.1.3.1 Balancing Expressiveness and Compactness
When summarizing the data flow semantics of a library, certain key artifacts in the
library will be crucial to its data flow. For example, individual field definitions must be
present if a summary is to be used in a field-sensitive way, and individual call sites must
be preserved if library callbacks are to be captured. For example, we empirically show

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

that 93.07% of summarized field flows will be false positives if field definitions are not
retained. Consequently, fields, method call sites, literal values, and formal and informal
method parameters and return values are all key artifacts of a flow that must be
preserved in a summary data flow.

On the other hand, non-key features such as some def-use chains of assignments do
not add value to the paths in which they participate, and can be abstracted away in the
summary. FlowMiner elides (replaces paths with direct edges) uninteresting flow details
to arrive at an abstract data flow graph that contains the key artifacts crucial to the data
flow and reachability information between them, and is much more compact than the
original program graph. This allows us to achieve significant savings and enhanced
scalability versus the original library, while preserving soundness. In other words, the
flows that are preserved in FlowMiner's summary are precisely those that are actually
possible at runtime.

3.1.3.2 Validation
We have validated FlowMiner by demonstrating that our summaries of popular libraries
are much smaller than the original programs, yet more expressive and accurate than
other state-of-the-art summary techniques. We find that our summaries only contain
26.89% of the nodes and 16.32% of the edges of the original library program graphs, on
average.

3.1.3.3 Open Source
We provide FlowMiner, an open-source reference implementation of our algorithms that
extracts summaries given the source or byte code of a library and exports them to a
portable, tool-agnostic format. The FlowMiner research is described in more detail in
Tom Deering’s Ph.D. thesis and a paper based on this work will be submitted for
publication. The tool is available at the following site:
http://powerofpi.github.io/FlowMiner/

4. Results and Discussions

4.1 Summary
By the end of Phase I of the DARPA APAC project, our team audited 77 Android
applications developed by the Red team, of which 62 contained novel malware. A
control team was employed beginning with engagement 1C to use current state of the
art tools to audit the apps alongside Blue team performers. Our process correctly
identified malice in 57 (91.94 %) of the malicious apps and correctly classified 66 (85.71
%) apps as malicious or benign. We found 6 unintended malicious behaviors, and
missed malware in only 5 (6.49 %) of the apps consistently beating the control team.
We completed Phase I as the top performing Blue team.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

At the end of Phase I (starting with engagement 2B) the nature of the malware in the
challenge applications began to change from what was primarily seen in Phase I. The
malware became much more difficult and we saw the performance of all teams
including the control team reduced. Over the course of Phase II, our team audited 28
challenge applications developed by the Red team, of which 25 contained novel
malware. Our process correctly identified malice in 18 (72 %) of the malicious apps and
correctly classified 25 (89.29 %) apps as malicious or benign. We found 35 unintended
malicious behaviors, and missed malware in 7 (25 %) of the apps beating the control,
but not by as much in Phase I.

According to metrics provided at the PI meetings, we determined that we maintained
our position in Phase II among the top 3 performing teams and weren’t far behind the
leading team.

4.2 Analyst Backgrounds
The participating analysts included throughout the engagements included graduate
students, a staff member from the ISU research group (the staff member has an MS in
Computer Engineering), undergraduate research assistants, and software engineers
from EnSoft. During engagement 1A there were 6 analysts, but for every engagement
thereafter there were only 2-4 analysts working on challenge application audits per
engagement.

4.3 Analysis Process
Before the actual analysis, one person spent 1-2 hours to survey application size and
prepare all apps as Eclipse projects to be ready to audit. After preprocessing apps, two
analysts were assigned to each app. Each analyst worked independently and did not
have access to the work of other analysts. A coordinator who oversaw the process but
did not audit apps reviewed the results of the analysis done by each analyst. An
additional analyst was assigned to audit an app by the coordinator if the results from the
original two analysts were deemed to be in conflict or inconclusive. All analysts worked
independently without access to the results of analysis done by other analysts. A single
report for each application was chosen at the end of the experiment to submit in the
collection of final reports.

An emulator was used to verify the malicious behavior after the malware and triggers
were discovered and reported by the analyst. Emulation was not used to detect
malware; it was done strictly to observe the malicious behavior predicted by our
analysis. In some cases, we could not observe the malicious behavior, but we have still
reported the application as malware because we were certain of the presence of a
malicious payload based on our analysis.

4.4 Engagement Results

It is difficult to interpret the resu lts of the engagements for many reasons. The
experimental setup of each engagement evolved as engagements progressed. A
control team was not added until engagement 1 C and the difficulty of the malware
increased drastically starting with engagement 2A. In early Phase I some malicious
applications contained more than one malware, while later engagements reduced the
malicious surface area by limiting the malware to a single malicious behavior. In
engagement 1 8 we were tasked with finding all malwares. Starting with engagement
28 we were given access to a human oracle that confirmed malice when presented with
the correct evidence. While the main idea of the oracle persisted to the end of Phase II,
the oracles official response policy changed over engagements. The oracle was
intended to stop teams from "short circuiting" on unintended malice. Engagements 1 C,
28, and 38 were onsite and had limits on the number of analysts (4, 3, and 3
respectively) and limits on time (8, 4, and 5 hours respectively). A few select
applications in engagement 38 and 4A were "updates" to existing applications in
previous engagements so that previous knowledge could be drawn upon for during the
audits. Beginning with engagement 1 8, application support libraries came "packed" into
the source instead of as dependent JAR libraries and were considered in scope of the
audit. During engagement 4A all apps were known to be malicious, as opposed to
previous engagements where the classif ication of the appl ication was unknown.

Table 1 - Challenge Application Distribution

Enaaaement #ADDS # Malicious ADDS # Benian ADDS # Malwares

1A 26 21 5 29

18 16 14 2 16

1C 10 7 3 7

2A 16 13 3 15

28 9 7 2 8

3A 10 8 2 8

38 4 3 1 3

4A 14 14 0 14

Phase / 77 62 15 75

Phase // 28 25 3 25

Total 105 87 18 100

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

Not counting a dry run practice engagement, which had 8 challenge applications, our
team completed 105 appl ication audits. Of the 105 appl ications, 87 were officially
classified as malware containing 100 individual officially malicious behaviors.

Table 2 - Challenge Application Metrics

Average Average Average Average Average Average
Java Java XML XML Other Other Average

Engagement Files LOC Files LOC Files LOC Comments

1A 65.65 7128.08 24.46 1778.77 4.08 922.77 3145.46

18 80.5 8841.44 49.31 2233.25 0.56 83.94 4498.31

1C 28 3417.8 27.1 1965.3 0 0 2548.4

2A 50.44 6310.19 18.44 400.75 0 0 2095.81

28 70.56 9144.33 17.89 530.56 0 0 9807.56

3A 53.8 5743.7 24.3 813.8 0.1 25.5 2686.5

38 18 2083.5 16.75 383 1.75 62.25 194.25

4A 89.86 8819.29 17.79 604.79 0 0 4190.5

Phase/ 66.71 6758.61 19.96 647.75 0.29 18 3082.46

Phase// 61.26 7067.96 27.95 1465.19 1.49 329.03 3909.61

Total 62.71 6985.47 25.82 1247.21 1.17 246.09 3689.04

Average Logical Lines of Code
10000

9000

8000

7000 ..
-o

6000 0
u
0 5000

"' .. 4000 c
~

3000

2000

1000

0
1A lB lC 2A 28 3A 38

Engagement

Figure 4 -Average Logical Lines of Code
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20

Average
Libraries

4A

0.81

0.5

0

0

0

0

0

0

0

0.38

0.28

Engagement

1A

18

1C

2A

28

3A

38

4A

Phase/

Phase II

Over Both

100

90

80

., 70
rn 60 0::
c
0 50
~ ., 40,
0 30

20

10

0
0

Table 3 - Challenge Application Detection Rates

Correct
Classification

Correctly Identified
Malice

Missed
Detections Unintended Malware

1000

88.46 % 95.24 % 3.85 % 2 issues

87.5 % 100 % 0 % 2 issues

90 % 100 % 0 % 1 issue

81.25 % 84.62 % 12.5 % 1 issue

77.78 % 71.43 % 22.22 % Oissues

80 % 62.5 % 30 % 4 issues

100 % 0 % 75 % 10 issues

92.86 % 92.86 % 7.14 % 21 issues

85.71 % 91.94 % 6.49 % 6issues

89.29 % 72 % 25 % 35 issues

86.67% 86.31 % 11.43 % 41 issues

Application Size vs. Detection Rate

• • • R2 = 0.35~.3 .• . ·_ .

..........

2000 3000

... L'

4000

•
.. ~ 4 •••••

5000 6000

...

Logi cal Lines of Code

.... ·····

7000 8000

Figure 5 - Application Size vs. Detection Rate

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

•

9000 10000

Engagement

1A

18

1C

2A

28

3A

38

4A

Phase/

Phase//

Over Both

14

u

10

Ill 8
~

::J
0
I 6

0
0

Table 4 - Challenge Application Analysis Time

Total Analysis Time Average Analysis Time

29.72 hours 1.14 hours

13.44 hours 0.84 hours

8.24 hours 0.82 hours

26.35 hours 1.65 hours

9.03 hours 1.00 hours

83.98 hours 8.40 hours

13.01 hours 3.25 hours

160.20 hours 11.44 hours

86.78 hours 1.12 hours

257.19 hours 9.19 hours

343.98 hours 3.28 hours

Application Size vs. Analysis Time

•

•

R"=0.0184 , ~---····························· ······~-~···········~····.._ t•

1000

• • •
2.000 3000 4000 5000 6000 7000 8000

logica l lines of Code

Figure 6 -Application Size vs. Analysis Time

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

• •
9000 10000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

4.5 Engagement Observations

In engagements 1A the Red team created new small applications, less than 500 lines of
code (LOC), and utilized existing open source applications ranging from 2K LOC to 60K
LOC. The malice focused on breaking automation techniques. The general consensus
was that the smaller applications were small enough to manually read to discover
malware.

After engagement 1C all applications had a minimum of 1000 LOC. As we expected,
our performance with respect to analysis time and correct detection of the intended
malware was not correlated with the size of the application (see Figure 5 and Figure 6).
This confirms our belief that the difficulty in finding the malware has less to do with the
size of the code and more to do with the characteristics of the malware itself. For
instance a malware that connects to the Internet and uses a class loader to execute
code that it downloads when the application starts stands out like a sore thumb in an
application that primarily works offline regardless of the size of the application. If the
malware is blended with legitimate functionality and uses existing control flow and data
flows for malicious purposes the task of detection becomes much more difficult even for
applications of a few hundred lines of code. Engagements in Phase II tended to
increase the difficulty by creating subtle domain specific malware that could not be
modeled a priori and thus coming up with a good malware hypothesis became the
bottleneck.

While the applications in 1A through 1C contained several modified open source
applications, starting with engagement 2A the applications were developed from
scratch. This simulated an adversary that was intimately familiar with the environment
the source code. As an experiment the Red team hired an intern who produced large,
complex, but poorly written application to confuse the human auditor. In other cases
large sections of dead, broken, or unfinished code were intentionally added to increase
the difficulty of discovering malicious behaviors. In such cases, the difficulty increased
primarily due to poor code quality and not the size of the code.

The general complexity of the base applications also increased in later engagements.
While applications in early engagements included apps such as a countdown timer,
bible, screensaver, battery monitor, calculator, and backup utilities, later engagements
included apps such as an AI Short Message Service (SMS) bot, a network scanner with
custom programming language and interpreter shell, device administration utilities, and
a device tracking system with a signature based firewall to prevent abuse. These
applications took more human effort to understand and hypothesis potentially malicious
behaviors.

Early engagements were almost entirely confidentiality based, which made it easy to
hypothesize malware and analyze code for its presence. The types of malware that we

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

failed to detect in Phase I were because of the difficult of generating malware
hypothesis as such as malware that wasted battery by using an inefficient algorithm or
an infinite loop in a background thread or issues that could have been detected with
functional testing such a backup application that used a regular expression to incorrectly
backup a Chinese phone number (flipping the 5 and 6 digits).

Near the end of Phase I we saw applications that maliciously collaborated with other
applications. We also observed the difficulty of dynamic analysis increasing,
presumably to thwart teams utilizing dynamic analysis approaches. This increased
difficulty made the “trigger analysis” much more difficult because the malware would
occur in a set of very precise conditions such as the 99th time an application was
launched or after a menu 3 levels deep was selected on one screen and another menu
was selected 3 levels deep on another screen. If one part of the malware was
discovered, it was still difficult to figure out how that part could be triggered by another
action or state in some other part of the application. In many of the later challenge
applications, the malware itself was external to the application and what was left to
discover in the application was more of a vulnerability that could be leveraged by a
malicious interaction with the application. To make it more difficult these interactions
tended to happen over custom protocols for which we only had the client libraries or
interactions with a web server that was not provided during the audit, making it much
more difficult to realize the big picture without additional time investments during the
audit.

We saw our analysis time increase from an average of approximately 1 hour per
application in Phase I to approximately 9 hours per application in Phase II. This
became an issue during onsite engagements 2B and 3B where our maximum analysis
time was capped at 4 and 5 hours respectively, resulting in poor performance. All Blue
teams together could only discover two malwares in Engagement 3B.

Especially in engagement 4A, “decoy malwares” were placed near the official malware.
These decoy malware looked and felt malicious to a human, but were somehow subtly
broken or deactivated (but not always) so as to misdirect the human analyst’s suspicion
down the wrong trail. These applications, while challenging, were not realistic in our
opinion because malware authors tend not to intentionally draw suspicion to
themselves.

5. Tool Releases
The Atlas platform enables the creation of much more powerful analysis tools than
would be possible starting from scratch and represents years of research and
development in practical, highly scalable techniques for software analysis.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

The Security Toolbox and the Flow Analysis Toolbox are furnished to the Government
with unlimited rights. At the end of the project EnSoft will furnish the Government with a
perpetual organization-wide license of the version of Atlas necessary to run the final
Security
Toolbox and Flow Analysis Toolbox for the sole purpose of using the Security Toolbox
and the Flow Analysis Toolbox at no additional cost. In addition, at the end of the
project, EnSoft will furnish the Government one year of complimentary maintenance,
which includes EnSoft's world-class support and all updates to Atlas during the
maintenance period.

Any and all modifications to the Atlas platform remain the sole property of EnSoft. All
licenses of Atlas that will be furnished are for binaries of Atlas. EnSoft will provide
binaries to non-Government parties including ISU and performers in other technical
areas as required. EnSoft will provide source and binaries to the Government. This
source code is licensed to the government for the sole purpose of building Atlas for use
with the Security Toolbox and the Flow Analysis Toolbox. This source code may not be
disclosed to non-Government parties and remains the sole property of EnSoft.

Information about the commercial off the shelf (COTS) version of Atlas is available on
the EnSoft webpage [5]. Information about the XCSG schema and tutorials for learning
Atlas are available online [6]. Several components of the Security Toolbox have been
extracted into smaller general-purpose toolbox plugins and released under the MIT
License [7].

6. Concluding Remarks

The DARPA APAC program gave us an opportunity to make three important
technological advances:

1. A graph database program analysis platform and a graph schema for
representing program semantics that together facilitate both automation and
human comprehension.

2. Malware analysis techniques and their incorporation in a security toolbox to
provide man-machine analysis system to detect novel, sophisticated Android
malware.

3. An innovative technique to summarize large software libraries and its
incorporation in the FlowMiner tool that mines expressive, compact information
flow summaries from a library for accurate and scalable partial program analysis.

These technological advances have enabled us to perform well in challenge
engagements. In almost every engagement our team’s analysis times were lower than

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

those of all other performers. We attribute the speed and accuracy of our analysis to
the maturity of our tools and their capabilities to quickly traverse and answer complex
queries about very large code. We believe that this is a highly relevant capability of any
malware detection tool. We were continually complemented on the maturity and
usability of our tool by the Red teams. We believe our tool capabilities matured
significantly as a result of the engagements, but since we cannot quantitatively define
the difficulty of malware it is difficult to prove.

The APAC Board Area Announcement (BAA) listed developing practical program
analysis tools to keep malware out of Department of Defense (DoD) app stores as a
primary goal for the program. To determine tool relevance the challenge app reports
requested written explanations of how the tooling was relevant to solve the challenge,
but in many cases a tool’s relevancy would be better demonstrated through a video or
live demo at program meetings. Our team made strong efforts to provide
demonstrations of our tool at PI meetings and to interested parties, but several teams
did not.

The Red team was able to craft very domain specific malicious vulnerabilities, such as a
custom protocol that when combined with another instance of itself causes a broadcast
storm of messages (SMSBot from engagement 2B). The crucial difficulty lies in
generating a good malware hypothesis. Coming up with the right theorem is itself the
difficult part!

In the beginning our team was the only team that proposed a human-in-the-loop
process, but it seems the teams that proposed fully automated processes all
underestimated the importance of the human role and adopted similar strategies to our
team’s proposal as the program progressed. In our opinion, significant new research is
warranted to enable the human analyst generate domain-specific malware hypotheses.

7. Publications

1. Security Toolbox for Detecting Novel and Sophisticated Android Malware.
Benjamin Holland, Tom Deering, Suresh Kothari, Jon Mathews, Nikhil Ranade.
International Conference on Software Engineering, 2015.

2. A “Human-in-the-loop” Approach for Resolving Complex Software Anomalies.

Suresh Kothari, Akshay Deepak, Ahmed Tamrawi, Benjamin Holland, Sandeep
Krishnan. IEEE International Conference on Systems, Man, and Cybernetics,
2014.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

3. Atlas: A New Way to Explore Software, Build Analysis Tools. Tom Deering,
Suresh Kothari, Jeremias Sauceda, Jon Mathews. International Conference on
Software Engineering, 2014.

4. Multi-faceted Practical Modeling Education for Software Engineering. Suresh

Kothari, Jeremias Sauceda. ACM/IEEE 16th International Conference on Model
Driven Engineering Languages and Systems, 2013.

8. References

1. DARPA APAC Program. http://www.darpa.mil/Our_Work/I2O/Programs/
Automated_Program_Analysis_for_Cybersecurity_(APAC).aspx, 2015.

2. BAA 11-63. Automated Program Analysis for Cybersecurity. DARPA Information

Technology Office, 2011.

3. BAA 99-08. Software-Enabled Control. DARPA Information Technology Office,
1999.

4. "Common Attack Pattern Enumeration and Classification." CAPEC. MITRE, Web.

20 Feb. 2015. <https://capec.mitre.org>.

5. "Atlas." EnSoft. EnSoft Corp., Web. 20 Feb. 2015.
<http://www.ensoftcorp.com/atlas>.

6. "Main Page." AtlasWiki. EnSoft Corp., Web. 20 Feb. 2015.

<http://ensoftatlas.com>.

7. "EnSoft Corp." GitHub. Web. 20 Feb. 2015. <https://github.com/EnSoftCorp>.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

9. List of Acronyms

AFRL Air Force Research Laboratory
APAC Automated Program Analysis for Cybersecurity

API Application Programming Interface
AST Abstract Syntax Tree
BAA Broad Area Announcement
CIA Confidentiality, Integrity, and Availability

COTS Commercial Off The Shelf
CPA Comprehension-Driven Program Analysis

DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
GUI Graphic User Interface
ISU Iowa State University
LoC Lines of Code
QMR Query-Model-Refine
SEC Software Enabled Control
SMS Short Message Service
XCIL eXtensible Common Intermediate Language

XCSG eXtensible Common Software Graph
XML eXtensible Markup Language

